CN EN
  • The MDR1-MDCK monolayer is widely used across the pharmaceutical industry as an in vitro model for the identification and characterization of P-gp substrates and inhibitors and to predict brain uptake potential.1,2 P-gp is one of the most well-recognized efflux transporters in many tissues including the brain, kidney and intestine.

  • MDR1-MDCK is a cell line originating from Madin Darby canine kidney cells with over expression of MDR1 gene (encoding for P-gp protein) by transfection.3

 

Readout: Papp (A→B),  Papp (B→A),  Efflux ratio, % Recovery

Controls: with and without Pgp inhibitor; Atenolol, Propanolol, Digoxin, Prazosin

 

Assay Description:

The MDR1-MDCK cells are cultured to confluency, trypsinized and seeded onto a filter transwell insert at a density of 18,000 cells/well in DMEM cell culture medium. Cells are grown in a humidified atmosphere of 5% CO2 at 37 °C. Following an overnight attachment period (24 h after seeding), the cell medium is replaced with fresh medium in both the apical and basolateral compartments every other day. The cell monolayers are used for transport studies 3 days post seeding after measuring the TEER values (>600 Ohms/cm2). The apical sides and basolateral sides are washed consecutively with HBSS 2.5% (v/v), HEPES (pH 7.4) or HBSS 2.5% (v/v), HEPES 10% (v/v), and Fetal Bovine Serum (pH 7.4) at 37 °C in an incubator under an atmosphere of 5% CO2.

Donor working solution is prepared by dilution of DMSO stock of test article or positive control with transport media to 10 µM.

For A → B directional transport, the donor working solution (with test article or positive control, with or without Pgp inhibitor) is added to the apical (A) compartment and the transport media as receiver working solution is added to the basolateral (B) compartment. For B → A directional transport, the donor working solution (with positive control or test article, with or without Pgp inhibitor) is added to the basolateral (B) compartment and transport media as receiver working solution is added to the apical (A) compartment.

The cells are incubated in a humidified atmosphere of 5% CO2 at 37 °C for 90 minutes.

At the end of the incubation, samples are taken from both donor and receiver compartments and transferred into 96-well assay plates containing internal standard solution (IS) in each well. After centrifugation, the supernatant solutions are transferred to clean 96 well plates and analyzed by LC-MS/MS. The MS detection is performed using a SCIEX API 4000 instrument. Each compound is analyzed by reversed phase HPLC.

 

Data Analysis:

The parameters Papp (apparent permeability) and efflux ratio are calculated as follows:

Papp = (dQ/dt) × (1/C0) × (1/A)

Efflux ratio = Papp [B → A] / Papp [A → B]

where dQ/dt is the permeability rate, C0 is the initial concentration in the donor compartment, and A is the surface area of the cell monolayer (0.33cm2). The Papp value is a rate measured in cm/s.

Calculated Papp is ranked as low (<1×10-6 cm/s), moderate (1-10×10-6 cm/s), and high (>10×10-6 cm/s).

Comparing the efflux ratios generated in the presence and absence of a Pgp inhibitor identifies whether the test article is a Pgp substrate. A compound is considered to be a Pgp substrate when the efflux ratio in the absence of inhibitor is >1.99 and is significantly reduced (≤ 1) in the presence of an inhibitor.

Recovery is calculated as follows:

%Recovery = (Total compound mass in donor and receiver compartments at the end of the incubation / Initial compound mass in the donor compartment) x 100.

 

Abbreviations:

DMEM       Dulbecco’s Modified Eagle Medium

DMSO        Dimethylsulfoxide

HBSS          Hank’s Buffered Salt Solution

HEPES        4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HPLC          High-performance liquid chromatography

Pgp              P-glycoprotein 1, also known as multidrug resistance protein 1 (MDR1)

LC                Liquid chromatography

MS               Mass spectrometry

TEER           Transepithelial Resistance (in Ohm/cm2)

 

Literature:

  1. Wang, Q.; et al. “Evaluation of the MDR-MDCK cell line as a permeability screen for the blood–brain barrier”; Int. J. Pharmaceutics. 288, 349, (2005).

  2. Feng, B, et al. “In Vitro P-glycoprotein Assays to Predict the in Vivo Interactions of P-glycoprotein with Drugs in the Central Nervous System”; Drug Metab. Dispos. 36, 268, (2008).

  3. Pastan, I.; et al. Proc Natl Acad Sci USA 85, 4486, (1988).

 

How can we meet your drug discovery and development needs?

Contact Us